(2x^2-4x+1)=(5x+x^2-1)

Simple and best practice solution for (2x^2-4x+1)=(5x+x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2-4x+1)=(5x+x^2-1) equation:



(2x^2-4x+1)=(5x+x^2-1)
We move all terms to the left:
(2x^2-4x+1)-((5x+x^2-1))=0
We get rid of parentheses
-((5x+x^2-1))+2x^2-4x+1=0
We calculate terms in parentheses: -((5x+x^2-1)), so:
(5x+x^2-1)
We get rid of parentheses
x^2+5x-1
Back to the equation:
-(x^2+5x-1)
We add all the numbers together, and all the variables
2x^2-4x-(x^2+5x-1)+1=0
We get rid of parentheses
2x^2-x^2-4x-5x+1+1=0
We add all the numbers together, and all the variables
x^2-9x+2=0
a = 1; b = -9; c = +2;
Δ = b2-4ac
Δ = -92-4·1·2
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{73}}{2*1}=\frac{9-\sqrt{73}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{73}}{2*1}=\frac{9+\sqrt{73}}{2} $

See similar equations:

| 5(7x-8)=30 | | 2s+7=3s-30 | | -3r(2-r)=15 | | 70=-7p+21 | | 21=1+7x | | 4w-26=82 | | -6=f/5 | | -4(-5y-4)=2(10y+8) | | 15p-14p=20 | | 2(n+3)+3(n+1)=42 | | 18-0.75x=12-0.25x | | x²+18=22 | | -1(3x-4)=5 | | 1(x+15)=4 | | 8x-2-5x=-23 | | -1/8x-37=24 | | 13=9-(p+2) | | 2x+4+112=180 | | 10x+15=55* | | 12+1=5x+3 | | 9x-(8x+9)=2x-17 | | 6x=331-7 | | -15x-14=-14-16-14x | | 4n+5n-12=9(n-2) | | 2x=+14=x+7 | | c/(-6)=10 | | -7x+8x=-3 | | 4.4+10m=7.38 | | a+6(5-5a)=-173 | | ⅓(q+3=5 | | 5+2x=2x*6 | | x^2+19=-5 |

Equations solver categories